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Time-dependent speckle pattern of paraelectric barium titanate observed in a soft x-ray laser pump-probe
measurement is theoretically investigated as a correlated optical response to the pump and probe pulses. The
scattering probability is calculated based on a model with coupled soft x-ray photon and ferroelectric phonon
mode. It is found that the speckle variation is related to the relaxation dynamics of ferroelectric clusters created
by the pump pulse. Additionally, critical slowing down of cluster relaxation arises on decreasing temperature
toward the paraelectric-ferroelectric transition temperature. The relation between critical slowing down, local
dipole fluctuation, and crystal structure is revealed by quantum Monte Carlo simulation.
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I. INTRODUCTION

Speckle is the random granular pattern produced when a
coherent light is scattered off a rough surface. It carries in-
formation of the specimen surface, for the intensity and con-
trast of the speckle image vary with the roughness of surface
being illuminated.1 Numerous approaches have been devised
to identify surface profiles by either the speckle contrast or
the speckle correlation method.2 Recent application of pulsed
soft x-ray laser has improved the temporal and spatial reso-
lution to a scale of picosecond and nanometer. By this
means, dynamics of surface polarization clusters of barium
titanate �BaTiO3� across the Curie temperature �Tc� has been
observed,3,4 which paves a new way to study the
paraelectric-ferroelectric phase transition.

As a prototype of the ferroelectric perovskite compounds,
BaTiO3 undergoes a transition from paraelectric cubic to
ferroelectric tetragonal phase at Tc=395 K. Below Tc, two
kinds of ferroelectric domain are developed with mutually
perpendicular polarization. Structural phase transition and
domain induced surface corrugation have been observed via
atomic force microscopy,5 scanning probe microscopy,6 neu-
tron scattering,7 and polarizing optical microscopy.8 In addi-
tion to the extensive application of BaTiO3 in technology
due to its high dielectric constant and switchable spontane-
ous polarization,9 there is also an enduring interest in under-
standing the mechanism of paraelectric-ferroelectric phase
transition. It is generally considered that the transition is a
classic displacive soft-mode-type driven by the anharmonic
lattice dynamics.10,11 However, recent studies have also sug-
gested an order-disorder instability which coexists with the
displacive transition.12,13 Therefore, direct observation on
creation and evolution of ferroelectric cluster around Tc is of
crucial importance for clarifying the nature of phase transi-
tion. Since the above-mentioned conventional time-average-
based measurements cannot be adapted to the detection on
ultrafast transient status of dipole clusters, diffraction speckle
pattern of BaTiO3 crystal measured by the picosecond soft
x-ray laser has turned out to be an efficient way for this
purpose.

Very recently, Namikawa et al.14 study the polarization
clusters in BaTiO3 at above Tc by the plasma-based x-ray
laser speckle measurement in combination with the tech-
nique of pump-probe spectroscopy. In this experiment, two
consecutive soft x-ray laser pulses with wavelength of
160 Å and an adjustable time difference are generated co-
herently by the Michelson-type beam splitter. After the pho-
toexcitation by the pump pulse, ferroelectric clusters of
nanoscale are created in the paraelectric BaTiO3 and tends to
be smeared out gradually on the way back to the equilibrium
paraelectric state. This relaxation of cluster thus can be re-
flected in the variation in speckle intensity of the probe pulse
as a function of its delay time from the first pulse. It has been
found that the intensity of speckle pattern decays as the delay
time increases. Moreover, the decay rate also decreases upon
approaching Tc, indicating a critical slowing down of the
cluster relaxation time. Hence, by measuring the correlation
between two soft x-ray laser pulses, the real time relaxation
dynamics of polarization clusters in BaTiO3 is clearly repre-
sented. In comparison with other time-resolved spectroscopic
study on BaTiO3, for example the photon correlation spec-
troscopy with visible laser beam,15 Namikawa’s experiment
employs pulsed soft x-ray laser as the light source. For this
sake, the size of ferroelectric cluster is reduced down to a
few nanometers, and the cluster relaxation time is at a scale
of picosecond. This measurement, thus, offers a new insight
into the ultrafast quantum dynamics of domain structure.

In this work, we examine the above-mentioned novel be-
haviors of ferroelectric cluster observed by Namikawa from
a theoretical point of view, aiming to provide a basis for
understanding the critical nature of BaTiO3. Theoretically,
the dynamics of a system can be adequately described by the
linear-response theory, i.e., to express the dynamic quantities
in terms of time-correlation functions of the corresponding
dynamic operators. In general, the path-integral quantum
Monte Carlo method is computationally feasible to handle
the quantum many-body problems, for it allows the system
to be treated without making any approximation. However,
simulation on real time dynamics with Monte Carlo method
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is still an open problem in computational physics because of
the formidable numerical cost of path summation which
grows exponentially with the propagation time. The common
approach to circumvent this problem is to perform imaginary
time path integration followed by analytic continuation, and
to compute the real time dynamic quantities using Fourier
transformation. In the present study, the real time-correlation
functions and real time dependence of speckle pattern are
investigated by this scheme. Our quantum Monte Carlo
simulation demonstrates that the relaxation dynamics of pho-
tocreated nanoclusters plays an essential role in determining
the delay-time dependence of speckle variation. Further-
more, it is found that the critical slowing down of photore-
laxation is related to the local dipole fluctuation, which arises
near Tc and stabilizes the photocreated ferroelectric cluster.

The remaining of the present paper is organized as fol-
lows. In Sec. II, the model Hamiltonian and theoretical treat-
ment are elaborated. In Sec. III, our numerical results on
speckle correlation and critical slowing down are discussed
in details. In Sec. IV, a summary with conclusion is pre-
sented finally.

II. THEORETICAL MODEL AND METHODS

A. Model Hamiltonian

The theoretical interpretations for structural phase transi-
tion and domain-wall dynamics have be well established in
the framework of Krumhansl-Schrieffer model �also known
as �4 model�.16–19 In this model, the particles are subject to
anharmonic on-site potentials and harmonic intersite cou-
plings. The on-site potential is represented as a polynomial
form of the order parameter such as polarization, displace-
ment, or elasticity, which displays a substantial change
around Tc. Since the �4 model is only limited to second-
order transitions, in the present work we invoke a modified
Krumhansl-Schrieffer model �also called �6 model�20,21 to
study the first-order ferroelectric phase transition of BaTiO3.
In this scenario, the Hamiltonian of BaTiO3 crystal ��Hf� is
written as �here we let �=1�,

Hf = −
�0

2 �
l

�2

�Ql
2 + U0 + Ui, �1�

U0 =
�0

2 �
l
�Ql

2 − c4Ql
4 +

c6

3
Ql

6� , �2�

Ui = −
�0d2

2 �
�l,l��

QlQl�, �3�

where, U0 and Ui are the on-site potential and intersite cor-
relation, respectively. Ql is the coordinate operator for the
electric-dipole moment due to a shift of titanium ions against

oxygen ions, i.e., the T1u transverse optical phonon mode. �0
is the dipole oscillatory frequency, l labels the site, and �l , l��
in Eq. �3� enumerates the nearest-neighboring pairs.

In order to describe the optical response of BaTiO3 due to
x-ray scattering, we design a theoretical model to incorporate
the radiation field and a weak interplay between radiation
and crystal. The total Hamiltonian reads,

H = Hp + Hf + Hpf , �4�

where

Hp = �
k

�kak
†ak, �k = c	k	 , �5�

is the Hamiltonian of polarized light field. ak
†�ak� is the cre-

ation �annihilation� operator of a photon with a wave number
k and an energy �k. c is the light velocity in vacuum. In
Namikawa’s experiment, the wavelength of x-ray is 160 Å,
thus the photon energy is about 80 eV. Denoting the odd
parity of T1u mode, the photon-phonon scattering is of a bi-
linear Raman type,

Hpf =
V

N
�

q,q�,k

ak+�q � 2�
† ak−�q � 2�Qq�−�q � 2�Q−q�−�q � 2� , �6�

where V is the photon-phonon coupling strength,
Qq��N−1/2�le

−iqlQl� the Fourier component of Ql with a
wave number q. Without losing generalitivity, here we use a
simple-cubic lattice, and the total number of lattice site is N.

B. Optical response to pump and probe photons

Since there are two photons involved in the scattering, the
photon-phonon scattering probability can be written as

P�t� = �
k1,k1�

��ak0
�0�ak1

† ���ak0
�t�ak1�

† �� + t�ak1�
��

+ t�ak0

† �t�ak1
���ak0

† �0��� , �7�

where

��¯�� = Tr�e−	H
¯�/�e−	H� �8�

means the expectation, 	��1 /kBT� is the inverse tempera-
ture, and the time dependent operators are defined in the
Heisenberg representation,

O�t� = eitHOe−itH. �9�

Here, t denotes the time difference between two incident
laser pulses as manifested in Fig. 1, and k0 the wave number
of incoming photon. After a small time interval �, the photon
is scattered out of the crystal. k1 and k1� are the wave numbers
of the first and second outgoing photons, respectively.

Treating Hpf as a perturbation, we separate Hamiltonian
of Eq. �4� as

H = H0 + Hpf , �10�

where

H0 = Hp + Hf , �11�
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is treated as the unperturbed Hamiltonian. By expanding the
time evolution operator in Eq. �9� with respect to Hpf,

e−itH → e−itH0
1 − i�
0

t

dt1Ĥpf�t1� + ¯� , �12�

we find that the lowest-order terms which directly depend on
t are of fourth order,

P�t� → �
0

�

dt1�
0

�

dt2�
0

�

dt1��
0

�

dt2� �
k1,k1�

��ak0
Ĥpf�t1��e

i�H0ak1

† ei�t−��Hfak0
Ĥpf�t2��e

i�H0ak1�
† ak1�

e−i�H0Ĥpf�t2�ak0

† e−i�t−��Hfak1


e−i�H0Ĥpf�t1�ak0

† �� , �13�

where the operators with carets are defined in the interaction
representation,

Ô�t� = eitH0Oe−itH0. �14�

Figure 2 represents a diagram analysis for this phonon-
coupled scattering process, where photons �phonons� are de-
picted by the wavy �dashed� lines, and the upper �lower�
horizontal time lines are corresponding to the bra �ket�
vectors.22 Diagram �a� illustrates the changes in wave num-
ber and energy of photons due to the emitted or absorbed

phonons. This is nothing but the Stokes and anti-Stokes Ra-
man scattering. Whereas, diagrams �b�–�e� are corresponding
to the exchange, side band, rapid damping, and rapid ex-
change effects, respectively.

Obviously, diagram �c� brings no time dependence, while
diagrams �d� and �e� only contribute a rapid reduction to the
time correlation of two laser pulses because of the duality in
phonon interchange. In this sense, the time dependence is
primarily determined by the diagrams �a� and �b�. Thus, the
scattering probability turns out to be

k
1
'k

1
k

0k
0

t+∆∆ t0
time

FIG. 1. Pulse sequence in an x-ray laser speckle experiment.
The pump and probe pulses of k0 creates and detects ferroelectric
clusters in the sample of paraelectric BaTiO3, respectively, and gen-
erate new x-ray fields in the direction k1 and k1� after a short-time
interval �.
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FIG. 2. Double-sided Feynman diagrams for scattering process of photons with phonons. The photons and phonons are denoted by the
wavy and dashed lines, respectively. In each diagram, the upper and lower horizontal time lines represent the bra and ket vectors,
respectively.
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P�t� = �
0

�

dt1�
0

�

dt2�
0

�

dt1��
0

�

dt2�
2V4

N4 �
q,q�

��ak0
eit1�Hpak0

† ak0−qe−i�t1�−��Hpak0−q
†


 ak0
eit2�Hpak0

† ak0+qe−i�t2�−��Hpak0+q
† ak0+qei�t2−��Hpak0+q

† ak0
e−it2Hpak0

†


 ak0−qei�t1−��Hpak0−q
† ak0

e−it1Hpak0

† ����Q̂q��t1��Q̂q−q��t1��Q̂−q+q��t + t2��


 Q̂−q��t + t2��Q̂q��t + t2�Q̂q−q��t + t2�Q̂−q+q��t1�Q̂−q��t1��� , �15�

where the photons and phonons are decoupled, and it be-
comes evident that the origin of the t dependence is nothing
but the phonon �dipole� correlation.

Since the photonic part in Eq. �15� is actually time inde-
pendent, and in the case of forward x-ray scattering we have
	k0	
	k1	
	k1�	, the normalized probability can be simplified
as

P�t�
P�0�

=
�q,q�

	��Qq
2��Gq+q��t�	

2

�q,q�
	��Qq

2Qq+q�
2 ��	2

, �16�

where

Gq�t� = − i2��TQ̂q�t�Q̂−q�0��� , �17�

is the real time Green’s function of phonon, and T the time-
ordering operator. In deriving Eq. �16�, we have also made
use of the fact that the light propagation time in the crystal is
rather short. The Fourier component of the Green’s function,

Gq��� = �
−�

�

dtGq�t�e−i�t, �18�

is related to the phonon spectral function ��Aq���� through23

Gq��� = �
−�

� d��

2�

Aq����

1 − e−	��
� 1

� − �� + i0+ −
e−	��

� − �� − i0+� .

�19�

The phonon spectral function describes the response of lat-
tice to the external perturbation, yielding profound informa-
tion about dynamic properties of the crystal under investiga-
tion. Once we get the spectral function, the scattering
probability and correlation function can be readily derived.

C. Dynamics of crystal

A mathematically tractable approach to spectral function
Aq��� is to introduce an imaginary time phonon Green’s
function, for it can be evaluated more easily than its real time
counterpart. In the real space, the imaginary time Green’s
function is defined as

Gll��
� � − 2��TQ̂l�
�Q̂l��0��� , �20�

where 
��it� is the argument for imaginary time �in this
paper, we follow a convention of using Roman t for real time

and Greek 
 for imaginary time�. The imaginary time depen-
dence of an operator in the interaction representation is given
by

Ô�
� = e
H0Oe−
H0. �21�

Under the weak-coupling approximation, and by using the
Suzuki-Trotter identity, the Green’s function can be rewritten
into a path-integral form �here we assume 
�0�,24

Gll��
� =� Dxe−	��f�x�−�f��− 2xl�
�xl��0�� , �22�

where xl is the eigenvalue of Ql,

Ql	xl� = xl	xl� , �23�

� f�x� is the path-dependent phonon free energy,

e−	�f�x� = e−�0
	d
�f�x�
��, �24�

with

� f = �
l

 1

2�0
� �xl

�

�2

+
1

2
�0xl

2 −
1

2
�0c4xl

4 +
1

6
�0c6xl

6�
−

1

2
�0d2 �

�l,l��

xlxl�, �25�

and � f is the total phonon free energy,

e−	�f =� Dxe−	�f�x�. �26�

In the path-integral notation, the internal energy of crystal Ef
����Hf��� is represented as

Ef =� Dxe−	��f�x�−�f�
�0�
l
�xl

2 −
3

2
c4xl

4 +
2

3
c6xl

6�
− �0d2 �

�l,l��

xlxl�� , �27�

from which the heat capacity can be derived as

Cf
V = � �Ef

�T
�

V

. �28�

The Green’s function of momentum space is given by
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Gq�
� =
1

N
�
l,l�

eiq�l−l��Gll��
� , �29�

which is connected with the phonon spectral function Aq���
through25

Gq�
� = − �
0

� d�

2�

cosh
�1

2
	 − 
���

sinh�1

2
	�� Aq��� . �30�

Solving this integral equation is a notoriously ill-posed nu-
merical problem because of the highly singular nature of the
kernel. In order to analytically continue the imaginary time
data into real frequency information, specialized methods are
developed, such as maximum entropy method26 and least-
squares fitting method.27 In present work, we adopt the itera-
tive fitting approach,24 for it can give a rapid and stable
convergence of the spectrum without using any prior knowl-
edge or artificial parameter. Since the phonon spectral func-
tion does not yield a specific sum rule like the case of elec-

tron, here we introduce an auxiliary spectral function Ãq���
which is defined by

Ãq��� � −

coth�1

2
	��

Gq�	�
Aq��� . �31�

Substituting Ãq��� into Eq. �30�, we get

Gq�
� = �
0

� d�

2�

cosh
�1

2
	 − 
���

cosh�1

2
	�� Gq�	�Ãq��� . �32�

It can be easily shown that this auxiliary spectral function
satisfies a sum rule,

�
0

� d�

2�
Ãq��� = 1, �33�

which allow us to solve the integral equation of Eq. �32� by

the iterative fitting approach. Once Ãq��� is reproduced, the
phonon spectral function Aq��� can be obtained from Eq.
�31�.

III. NUMERICAL RESULTS AND DISCUSSION

A. Optical responses

Based on the path-integral formalisms, the imaginary time
Green’s function can be readily calculated via a standard
quantum Monte Carlo simulation.24 Our numerical calcula-
tion is performed on a 10
10
10 cubic lattice with a pe-
riodic boundary condition. The imaginary time is discretized
into 10–20 infinitesimal slices. As already noticed for the
analytic continuation,28 if the imaginary time Green’s func-
tion is noisy, the uncertainty involved in the inverse trans-
form might be very large, and the spectral function cannot be

determined uniquely. In order to obtain accurate data from
quantum Monte Carlo simulation, a hybrid algorithm24 has
been implemented in our calculation. Besides, we pick out
each Monte Carlo sample after 100–200 steps to reduce the
correlation between adjacent configurations. The Monte
Carlo data are divided into 5–10 sets, from which the 95%
confidence interval is estimated through 10 000 resampled
set averages by the percentile bootstrap method. We found
that about 1 000 000 Monte Carlo configurations are suffi-
cient to get well converged spectral functions and real time
dynamic quantities.

In the numerical calculation, the phonon frequency �0 is
assumed to be 20 meV,29 the intersite coupling constant d2 is
fixed at a value of 0.032, whereas c4 and c6 are selected to
make the on-site U0 a symmetric triple-well potential. As
shown in Fig. 3, this triple-well structure is featured by five
potential extrema located at xa, �xb and �xc, where

xa = 0, �34�

xb =�c4 − �c4
2 − c6

c6
, �35�

xc =�c4 + �c4
2 − c6

c6
. �36�

In Figs. 4 and 5, we show the optical responses of crystal,
where c4=2.0132
10−2 and c6=3.2595
10−4 are used.
Figure 4 presents the phonon spectral functions in the
paraelectric phase at different temperatures: �a� T=1.001Tc,
�b� T=1.012Tc, �c� T=1.059Tc, and �d� T=1.176Tc, where
Tc=386 K. In each panel, the spectra are arranged with
wave vectors along the �XMR direction of Brillouin zone
�see in the inset of panel �a��, and � refers to energy. In the
inset of panel �b�, the spectrum at � point for T=1.012Tc is
plotted with 95% confidence interval illustrated by the error
bars. Since the spectra are symmetric with respect to the
origin �=0, here we only show the positive part of them. In
Fig. 4, when the temperature decreases toward Tc, as already
well known for the displacive-type phase transition, the en-
ergy of phonon peak is gradually softened. In addition, a
so-called central peak, corresponding to the low-energy ex-
citation of ferroelectric cluster, appears at the � point. The
collective excitation represented by this sharp resonant peak

x
a

ξ

δ

0 x
c

x
b

x

U
0
/ω

0

FIG. 3. On-site potential U0 for the modified Krumhansl-
Schrieffer model in the unit of �0. The coordinates of potential
extrema are denoted by xa, xb, and xc. � and � are two parameters
adopted to characterize this potential.
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is nothing but the photocreated ferroelectric cluster. On de-
creasing temperature, spontaneous polarization is developed
locally as a dipole fluctuation in the paraelectric phase. This
fluctuation can stabilize the photocreated ferroelectric clus-
ter, leading to a dramatically enhanced peak intensity near
Tc.

The appearance of sharp peak at � point nearby Tc signi-
fies a long lifetime of the photocreated ferroelectric clusters
after irradiation. Thus, near Tc, they are more likely to be
probed by subsequent laser pulse, resulting in a high inten-
sity of speckle pattern. Keeping this in mind, we move on to
the results of scattering probability. In Fig. 5, we show the
variation in normalized probability P�t� / P�0� as a function
of t �time interval between the pump and probe photons�.
Temperatures for these curves correspond to those in the
panels �a�–�d� of Fig. 4, respectively. In this figure,

P�t� / P�0� declines exponentially, showing that the speckle
correlation decreases with t increases as a result of the pho-
torelaxation of ferroelectric cluster. When t is long enough,
the crystal returns to the equilibrium paraelectric state. In
addition, as shown in the figure, the relaxation rate bears a
temperature dependence. On approaching Tc, the duration for
return is prolonged, indicative of a critical slowing down of
the relaxation. This is because with the decrease in tempera-
ture, the fluctuation of local polarization is enhanced, and a
long-range correlation between dipole moments is to be es-
tablished as well, making the relaxation of photocreated clus-
ters slower and slower.

B. Critical slowing down of photorelaxation

In order to quantitatively depict the critical slowing down,
we introduce a relaxation time tr to estimate the time scale of
relaxation, which is the time for P�t� to be reduced by a
factor of e from P�0�. In Fig. 5, P�t�= P�0� /e is plotted by a
horizontal dashed line. Correspondingly, tr is the abscissa of
the intersection point of relaxation curve and this dashed
line. In Fig. 6, the relaxation time for various local potential
U0 is presented at T�Tc. Here we adopt two legible param-
eters, � and �, to describe the potential wells and barriers for
U0 �see Fig. 3�, which are defined by

� � �U0�xb� − U0�xc��/�0, �37�

� � U0�xc�/�0. �38�

Provided � and �, c4 and c6 can be derived in terms of Eqs.
�35�–�38�. The values of c4 and c6 for the calculation of Fig.
6 are listed in Table I, where we set �=3.061 and change �

TABLE I. Parameters adopted for calculation of Fig. 6.

c4 c6 � �
Tc

�K�

2.0696
10−2 3.4521
10−4 4.239 3.061 340

2.0132
10−2 3.2593
10−4 4.439 3.061 386

1.9596
10−2 3.0814
10−4 4.639 3.061 422

FIG. 4. Phonon spectral functions along the line �XMR of Bril-
louin zone in the paraelectric phase at various temperatures: �a�
1.001Tc, �b� 1.012Tc, �c� 1.059Tc, and �d� 1.176Tc, where Tc

=386 K. The inset of panel �a� shows the Brillouin zone with high-
symmetry lines. The inset of panel �b� represents the spectrum at �
point when T=1.012Tc. Error bars mark the 95% confidence
interval.
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c

FIG. 5. Normalized speckle scattering probability as a function
of time for paraelectric BaTiO3, at various temperatures. Horizontal
dashed line denotes P�t�= P�0� /e.
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FIG. 6. Temperature dependence of relaxation time tr for vari-
ous � when T�Tc, where � is fixed at 4.439. Error bars show the
95% confidence interval.
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from 4.239 to 4.639. The leftmost point on each curve de-
notes the tr at just above Tc, which is a temperature deter-
mined from the singular point of Cf

V according to Eq. �28�.
As revealed by the NMR experiment,12 the paraelectric-

ferroelectric phase transition of BaTiO3 has both displacive
and order-disorder components in its mechanism. Short-
range dipole fluctuation arises in the paraelectric phase near
Tc as a precursor of the order-disorder transition, and con-
denses into long-range ferroelectric ordering below Tc. Thus,
in the present study, the relaxation of photocreated cluster is
also subject to the dynamics of this dipole fluctuation and
yields a temperature dependence. As illustrated by the three
curves in Fig. 6, if a ferroelectric cluster is created at a tem-
perature close to Tc, relaxation of this cluster is slow because
of a rather strong dipole fluctuation, which holds the cluster
in the metastable ferroelectric state from going back to the
paraelectric one. Away from Tc, tr decreases considerably for
the dipole fluctuation is highly suppressed. This behavior is
nothing but the critical slowing down of photorelaxation.

In Fig. 6, it can also be seen that with the increase in �, Tc
moves to the high-temperature side so as to overcome a
higher potential barrier between the ferroelectric and
paraelectric phases. Furthermore, the evolution of tr becomes
gentle as well, implying a gradual weakening of dipole fluc-
tuation at high-temperature region.

In Fig. 7, we show the temperature dependence of tr for
different � when T�Tc, where � is fixed at 4.439. The values
of parameters for this calculation are given in Table II. When
� changes from 3.261 to 2.861, as shown in Fig. 7, Tc gradu-
ally increases. This is because with the decrease in �, the
ferroelectric state at xc �refer to Fig. 3� becomes more stable
and can survive even larger thermal fluctuation. In a manner
analogous to Fig. 6, the evolution of tr also displays a sharp

decline at low temperature, and becomes smoother and
smoother as temperature increases.

In Fig. 8, we plot the temperature dependence of tr for
different barrier heights, i.e., �+� varies from 7.0 to 8.0,
while the ratio � /� is fixed at 1.5. Parameters for this calcu-
lation are provided in Table III. As already discussed with
Figs. 6 and 7, larger � tends to increases Tc, but higher �
applies an opposite effect on Tc. Combining these two ef-
fects, in Fig. 8, one finds that Tc increases if both � and � are
enhanced, indicating that in this case, the change in � plays a
more significant role. Meanwhile, in contrast to Figs. 6 and
7, all the three curves in Fig. 8 present smooth crossovers on
decreasing temperature toward Tc, signifying that dipole
fluctuation can be promoted by lowering � even the tempera-
ture is decreased.

In Namikawa’s experiment, the wavelength of soft x-ray
laser is 160 Å, hence the photocreated cluster is of nano-
scale. However, it should be noted that relaxation of nano-
sized cluster is beyond our present quantum Monte Carlo
simulation because of the size limitation of our model. This
is the primary reason why the experimentally measured re-
laxation time can reach about 30 ps, being several times
longer than our calculated results. In spite of the difference,
our calculation has well clarified the critical dynamics of
BaTiO3 and the origin of speckle variation.

IV. SUMMARY

We carry out a theoretical investigation to clarify the dy-
namic property of photocreated ferroelectric cluster observed
in the paraelectric BaTiO3 as a real time correlation of
speckle pattern between two soft x-ray laser pulses. The den-

TABLE II. Parameters adopted for calculation of Fig. 7.

c4 c6 � �
Tc

�K�

1.9626
10−2 3.1070
10−4 4.439 3.261 354

2.0132
10−2 3.2593
10−4 4.439 3.061 386

2.0663
10−2 3.4223
10−4 4.439 2.861 404

TABLE III. Parameters adopted for calculation of Fig. 8.

c4 c6 � � �+�
Tc

�K�

2.1557
10−2 3.7309
10−4 4.200 2.800 7.000 372

2.0122
10−2 3.2505
10−4 4.500 3.000 7.500 400

1.8860
10−2 2.8557
10−4 4.800 3.200 8.000 436

320 360 400 440 480
0

1

2

3

4

t r
(p

s)

T (K)

ξ=3.261
ξ=3.061
ξ=2.861

FIG. 7. Temperature dependence of relaxation time tr for vari-
ous � when T�Tc, where � is fixed at 3.061. Error bars show the
95% confidence interval.
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FIG. 8. Temperature dependence of relaxation time tr for vari-
ous barrier height �+� when T�Tc, where � /�=1.5 is assumed.
Error bars show the 95% confidence interval.
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sity matrix is calculated by a perturbative expansion up to
the fourth-order terms, so as to characterize the time depen-
dence of scattering probability. The cluster-associated pho-
non softening as well as central peak effects are well repro-
duced in the phonon spectral function via a quantum Monte
Carlo simulation. We show that the time dependence of
speckle pattern is determined by the relaxation dynamics of
photocreated ferroelectric cluster, which is manifested as a
central peak in the phonon spectral function. The photorelax-
ation of ferroelectric cluster is featured by a critical slowing
down on decreasing the temperature. Near the Tc, cluster

excitation is stabilized by the strong dipole fluctuation, cor-
respondingly the relaxation becomes slow. While, at higher
temperature, dipole fluctuation is suppressed, ending up with
a quicker relaxation of cluster. Our simulation also illustrates
that the critical slowing down and dipole fluctuation are sub-
ject to the chemical environment of crystal.
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